Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.
نویسندگان
چکیده
Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation.
منابع مشابه
Coexpressing Escherichia coli Cyclopropane Synthase with Sterculia foetida Lysophosphatidic Acid Acyltransferase Enhances Cyclopropane Fatty Acid Accumulation1[W][OPEN]
Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Esc...
متن کاملIdentification of bottlenecks in the accumulation of cyclic fatty acids in camelina seed oil
Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA-producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural-occurring source plants. Thus, to further our understanding of metabolic bottlenecks that l...
متن کاملCharacterization of cyclopropane fatty-acid synthase from Sterculia foetida.
Cyclopropane synthase from Sterculia foetida developing seeds catalyzes the addition of a methylene group from S-adenosylmethionine to the cis double bond of oleic acid (Bao, X., Katz, S., Pollard, M., and Ohlrogge, J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7172-7177). To understand this enzyme better, differential expression in leaf and seed tissues, protein properties, and substrate prefe...
متن کاملCarbocyclic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculiafoetida.
Fatty acids containing three-member carbocyclic rings are found in bacteria and plants. Bacteria synthesize cyclopropane fatty acids (CPA-FAs) only by the addition of a methylene group from S-adenosylmethionine to the cis-double bond of monoenoic phospholipid-bound fatty acids. In plants CPA-FAs are usually minor components with cyclopropene fatty acids (CPE-FAs) more abundant. Sterculia foetid...
متن کاملExpression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824.
The cyclopropane fatty acid synthase gene (cfa) of Clostridium acetobutylicum ATCC 824 was cloned and overexpressed under the control of the clostridial ptb promoter. The function of the cfa gene was confirmed by complementation of an Escherichia coli cfa-deficient strain in terms of fatty acid composition and growth rate under solvent stress. Constructs expressing cfa were introduced into C. a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 164 1 شماره
صفحات -
تاریخ انتشار 2014